Introduction and objectives	Modelling o	Marine particles	Trace elements o	Conclusion	
GEOTRACES programme: simulation					

GEOTRACES programme: simulation of particle and trace element distributions with the PISCES model

Marco van Hulten

LABORATOIRE DES SCIENCES DU CLIMAT & de l'environnement

simulation of particles and trace metals

Introduction and objectives	Modelling o	Marine particles	Trace elements o	Conclusion

2 Modelling

- 3 Marine particles
- 4 Trace elements

5 Conclusion

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion
Context				

Objective:

Better understanding the role of particles in the ocean biogeochemical cycles

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion
Context				

Objective:

Better understanding the role of particles in the ocean biogeochemical cycles

Project « TAPE » Tracers for Arctic Particles in the Environment

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion
Context				

Objective:

Better understanding the role of particles in the ocean biogeochemical cycles

Project « TAPE » Tracers for Arctic Particles in the Environment

Programme « GEOTRACES » trace elements and their isotopes in the marine environment

My background: trace metal modelling.

- Al comes from atmosphere and sediment, and is scavenged by Si_{biog}: *confirmed by my model*
- Mn has many sources, redox modelled as a first-order process: *reproduces observations*

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion
Aluminium				

Simulated [Al_{diss}] (nM). Dots are field measurements.

• High [Al_{diss}] at surface near dust deposition, and in the northern hemisphere near sediment (Van Hulten et al., 2014).

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion
Aluminium				

Simulated [Al_{diss}] (nM). Dots are field measurements.

- High [Al_{diss}] at surface near dust deposition, and in the northern hemisphere near sediment (Van Hulten et al., 2014).
- Revisit model after improving particle distributions!

Marco van Hulten

simulation of particles and trace metals

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion
Manganese				

Simulated $[Mn_{diss}]$ (nM). Dots are field measurements.

• Strong correlation, but simplistic model.

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion
Manganese				

Simulated $[Mn_{diss}]$ (nM). Dots are field measurements.

- Strong correlation, but simplistic model.
- Model should be improved: lithogenic particles needed, and possibly biogenic particles as well!

Improvement of the understanding and simulation of

 particles (POC, lithogenic particles, different sizes or labilities, ...)

Introduction and objectives Modelling Marine particles Trace elements Conclusion Operaticles and trace elements Operaticles Operaticles Operaticles Operaticles Operaticles

Improvement of the understanding and simulation of

- particles (POC, lithogenic particles, different sizes or labilities, ...)
- 2 trace metals (Th, Pa, Nd, Fe, Mn, ...)

Introduction and objectives Modelling Marine particles Conclusion of Particles and trace elements

Improvement of the understanding and simulation of

- particles (POC, lithogenic particles, different sizes or labilities, ...)
- 2 trace metals (Th, Pa, Nd, Fe, Mn, ...)

²³¹Pa/²³⁰Th and ¹⁴³Nd/¹⁴⁴Nd ratios are used as paleoproxies (sediment cores).

Introduction and objectives	Modelling o	Marine particles ●0000000	Trace elements o	Conclusion
Particles in the	ocean			

Marco van Hulten

simulation of particles and trace metals

Few particle measurements are available!

Marco van Hulten

simulation of particles and trace metals

Measurements (×) and PISCES v1 (---)

Standard PISCES:

- two size classes (small and big POC);
- remineralisation, aggregation and settling (w_↓) are crudely parameterised.

Standard PISCES:

- two size classes (small and big POC);
- remineralisation, aggregation and settling (w_↓) are crudely parameterised.

Approaches for improvement:

Size spectrum of particles (each with corresponding w_{\downarrow});

Standard PISCES:

- two size classes (small and big POC);
- remineralisation, aggregation and settling (w_↓) are crudely parameterised.

Approaches for improvement:

Size spectrum of particles (each with corresponding w_{\downarrow}); Lability spectrum or particle remineralisation rate.

Introduction and objectives	Modelling o	Marine particles ○○○○●○○○	Trace elements	Conclusion
Improvement				

- In PISCES v1: remineralisation function of *T* and [O₂].
- For the new *lability* parameterisation, it also depends on the particle *age* (Aumont and others).

• Originally used (with success) as a diagenesis model by Boudreau and Ruddick (1991).

Marco van Hulten

simulation of particles and trace metals

Dutay et al. (2009) performed simulations of 230 Th and 231 Pa in PISCES v1.

But POC was underestimated by PISCES!

 \Rightarrow adsorption coefficients K_d^i on particles were set much higher than those derived from observations.

Dutay et al. (2009) performed simulations of 230 Th and 231 Pa in PISCES v1.

But POC was underestimated by PISCES!

 \Rightarrow adsorption coefficients K_d^i on particles were set much higher than those derived from observations.

Simulation of ²³⁰Th and ²³¹Pa with new particle parameterisation with lower, *more realistic*, K_d^i .

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion ●○
Outlook				

1 Improvement of particle distributions;

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion ●○
Outlook				

- 1 Improvement of particle distributions;
- improvement of trace elements;

Introduction and objectives	Modelling o	Marine particles	Trace elements o	Conclusion ●○
Outlook				

- 1 Improvement of particle distributions;
- improvement of trace elements;
- 3 related work: ²³¹Pa/²³⁰Th paleoproxy, Mn oxides,

Introduction and objectives	Modelling o	Marine particles	Trace elements	Conclusion ○●
Discussion				

Questions?

- Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies, doi:10.5194/gmdd-8-1375-2015, 2015.
- Boudreau, B. P. and Ruddick, B. R.: On a reactive continuum representation of organic matter diagenesis, American Journal of Science, 291, 507–538, doi:10.2475/ajs.291.5.507, 1991.

More details

Dutay, J., Lacan, F., Roy-Barman, M., and Bopp, L.: Influence of particle size and type on ²³¹Pa and ²³⁰Th simulation with a global coupled biogeochemical-ocean general circulation model: A first approach, Geochem. Geophy. Geosy., 10, Q01 011, doi:10.1029/2008GC002291, 2009.

Hulten, M.M.P. van, Sterl, A., Middag, R., de Baar, H., Gehlen, M., Dutay, J.-C., and Tagliabue, A.: On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium, Biogeosciences, 11, 3757–3779, doi:10.5194/bg-11-3757-2014, 2014.

- Kriest, I. and Evans, G.: Representing phytoplankton aggregates in biogeochemical models, Deep-Sea Res. Pt I, 46, 1841–1859, doi:10.1016/S0967-0637(99)00032-1, 1999.
- Lam, P. J., Doney, S. C., and Bishop, J. K. B.: The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO₃, and opal concentration profiles from the mesopelagic, Global Biogeochem. Cy., 25, GB3009, doi:10.1029/2010GB003868, 2011.

More details

Lam, P. J., Ohnemus, D. C., and Auro, M. E.: Size-fractionated major particle composition and concentrations from the US GEOTRACES north Atlantic zonal transect, Deep-Sea Res. Pt II, doi:10.1016/j.dsr2.2014.11.020, 2015.

- Madec, G. et al.: NEMO ocean engine, Note du Pole de Modélisation, Institut Pierre-Simon Laplace, 2012.
- McManus, J., Francois, R., Gherardi, J.-M., Keigwin, L., and Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428, 834–837, doi:10.1038/nature02494, 2004.

- Roy-Barman, M., Jeandel, C., Souhaut, M., Rutgers van der Loeff, M., Voege, I., Leblond, N., and Freydier, R.: The influence of particle composition on thorium scavenging in the NE Atlantic ocean (POMME experiment), Earth Planet. Sc. Lett., 240, 681–693, doi:10.1016/j.epsl.2005.09.059, 2005.
- Stemmann, L. and Boss, E.: Plankton and Particle Size and Packaging: From Determining Optical Properties to Driving the Biological Pump, Annual Review of Marine Science, 4, 263–290,
 - doi:10.1146/annurev-marine-120710-100853, pMID: 22457976, 2012.

Tachikawa, K., Piotrowski, A. M., and Bayon, G.: Neodymium associated with foraminiferal carbonate as a recorder of seawater isotopic signatures, Quaternary Science Reviews, 88, 1–13, doi:10.1016/j.quascirev.2013.12.027, 2014. Model additions

Possible addition: lithogenic particles from

- dust (currently a forcing for instantaneous dissolution);
- · nepheloid layers.

Aggregation in PISCES: w_{\downarrow} increases with depth;

Aggregation in PISCES: w_{\downarrow} increases with depth; Ballast effect organic carbon is efficiently exported by heavy minerals;

Aggregation in PISCES: w_{\downarrow} increases with depth; Ballast effect organic carbon is efficiently exported by heavy minerals;

Size spectrum of particle sizes or w_{\downarrow} (Kriest and Evans, 1999);

Aggregation in PISCES: w_{\downarrow} increases with depth; Ballast effect organic carbon is efficiently exported by heavy minerals;

Size spectrum of particle sizes or w_{\downarrow} (Kriest and Evans, 1999);

Higher-order decay reactions of biogenic particles;

Aggregation in PISCES: w_{\downarrow} increases with depth; Ballast effect organic carbon is efficiently exported by heavy minerals;

Size spectrum of particle sizes or w_{\downarrow} (Kriest and Evans, 1999);

Higher-order decay reactions of biogenic particles;

Lability spectrum of particle reactivity.

Lability spectrum

Multiple components of reactivity k_i (all first-order). A continuum may be easier (needs less fitting parameters).

Bulk reaction occurs initially quickly, while the refractory part becomes more apparent after time.

Or: first-order near t = 0 but higher-order as $t \to \infty$.

$$g(k,0) = \frac{g_0 k^{\nu-1} e^{-ak}}{\Gamma(\nu)}$$

Originally used (with succes) as a diagenesis model (Boudreau and Ruddick, 1991).

References

Dutay et al. (2009): ²³¹Pa/²³⁰Th simulations

More details

0000

Parametrisation de Kd en fonction du flux particules

Petites vs. Grosses particules

Thorium 230

Exp1

Exp2

d'après Dutay et al, 2009

Pb: nos valeurs de Kd sont trop élevées en comparaison des observations

\$

Biologically active trace elements

Trace metals vs particles (Roy-Barman et al., 2005)

Marco van Hulten

simulation of particles and trace metals